

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 6307-6310

Tetrahedron Letters

An expeditious entry to carbohydrate derived enynes and ene-diynes via Sonogashira coupling of halo-*exo*-glycals

Ana M. Gómez,* Ana Pedregosa, Aitor Barrio, Serafín Valverde and J. Cristóbal López*

Instituto de Química Orgánica General, Natural Products, C.S.I.C., Juan de la Cierva 3, 28006 Madrid, Spain

Received 30 April 2004; accepted 18 June 2004 Available online 10 July 2004

Abstract—Sonogashira coupling of bromo or iodo-*exo*-glycals, readily prepared from 1-*exo*-methylene furanoses and pyranoses, provides an efficient entry to furanose- and pyranose-derived enyne and ene-diyne moieties found in biologically relevant structures. © 2004 Elsevier Ltd. All rights reserved.

Enyne is an important structural unit for biologically active organic compounds, including anticancer antibiotics,¹ natural products,² and also for new functional materials.³ In this context, tetrahydrofuran containing exocyclic enyne and ene-diyne moieties (e.g., **1**, Fig. 1)

Figure 1. Enyne and ene-diyne derived tetrahydrofurans.

have been found as substructures in natural products $(2, {}^{4}3, {}^{4a}4, {}^{5}5, {}^{6}6, {}^{7})$ or have been synthesized to evaluate their potential biological activities⁸ (7, 8). Our group has recently been interested in the synthesis of substituted furanosidic *exo*-glycals (2,5-anhydro-1-deoxy-hex-1-enitols), {}^{9,10} and in this Letter, we wish to report (a) that Sonogashira coupling¹¹ of carbohydrate derived halo-*exo*-glycals, for example, 9, with terminal alkynes can be successfully applied for the preparation of furanosidic and pyranosidic enynes, **10a** and **10b**, respectively, and (b) the preparation of furanose and pyranose derived ene-diynes (**10a,b** R==-Ph, Scheme 1).

During the course of this work we have illustrated the potential of the method with the preparation of substituted *exo*-glycals 17–22 from D-glucofuranose (11a,¹⁰ 11b¹⁰) and D-galacto and D-glucopyranose-derived halo-*exo*-glycals (12,¹² 13¹²) (See Table 1, Fig. 2).

The coupling reactions of halo-*exo*-glycals **11a**,**b**, **12**, and **13**, with trimethylsilyl acetylene (**14**), 1-dodecyne (**15**) and phenyl acetylene (**16**) took place smoothly to

Scheme 1. Synthesis of furanosidic enynes from halo-exo-glycals.

Keywords: exo-Glycals; Sonogashira; Enyne; Ene-diyne.

^{*} Corresponding authors. Tel.: +34-91-5622900; fax: +34-91-5644853; e-mail: clopez@iqog.csic.es

^{0040-4039/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.06.079

Entry	Glycal	Alkyne	Product	Yield (%)
i	11a	Si(CH ₃₎₃	Si(CH ₃) ₃	87 ^a
ii	11a	(CH ₂) ₉ -CH ₃	17 (CH ₂) ₉ -CH ₃ (CH ₂) ₉ -CH ₃	93 ^a
iii	11a	Ph 16		88 ^a
			19	
iv	11b	14	17	90 ^a
v vi	110 11b	15	18 19	96 ⁻ 91 ^a
viii	12	14	_	0 ^a
ix	12	14	BnO BnO BnO OBn	84 ^b
x	12	16	20	0^{a}
Δ	12	10		U
xi	12	16	BnO BnO BnO OBn	92 ^b
xii	13	14	21 BnO BnO BnO OBn 22	84 ^b

 Table 1. Preparation of enynes by reaction of halo-exo-glycals 11–13 with terminal alkynes 14–16

^a Et₂NH, CuI (5%), Pd(PPh₃)₂Cl₂ (10%). ^b Et₂NH, CuI (10%), Pd(PPh₃)₄ (5%).

Figure 2. Halo-exo-glycals starting materials.

give high yields of the corresponding substituted *exo*glycals.^{13,14} Several aspects of these reactions, however, deserve further comment: (a) the use of iodo-*exo*-glycals, compared with that of bromo-*exo*-glycals, resulted in slightly higher yields of substituted *exo*-glycals (Table 1, compare entries (i)–(iii) with (iv)–(vi)); (b) furanosidic halo-derivatives underwent coupling reactions under standard Sonogashira–Hagihara conditions (Pd(PPh₃)₂Cl₂, Et₂NH, CuI, THF);¹⁵ (c) the corresponding pyranosidic iodo-derivatives, however, did

Scheme 2. Synthesis of pyrano- and furanosidic ene-diynes.

not undergo any coupling reaction under the above mentioned conditions and required the presence of $Pd(0)^{16,17}$ ($Pd(PPh_3)_4$, Et_2NH , CuI, THF), rather than Pd(II), as catalyst¹⁸ (Table 1, compare entries (viii) and (x) with entries (ix), (xi)), (d) the coupling reactions, which are described to take place with retention of the configuration,¹⁹ afforded one single stereoisomeric *exo*-glycal from the single starting halo-*exo*-glycal.

The synthesis of ene-diyne moieties was next studied. An approach based on, the sometimes unreliable,¹⁶ sp–sp Sonogashira coupling²⁰ was first evaluated (Scheme 2). Accordingly, terminal alkyne **23** (readily prepared from enyne **22** by desilylation) was treated (Pd(PPh₃)₄, CuI, Et₂NH) with alkynyl iodide **24**²¹ to yield ene-diyne **25**. In order to assure the feasibility of the synthesis of ene-diynes we decided to investigate an alternative approach for the synthesis of furanose ene-diynes. In this context we found that ene-diyne **27** could be obtained in excellent yield by Sonogashira coupling of iodo-*exo*-glycal **11** with diyne **26**.²²

In summary, we have reported an efficient strategy for the preparation of synthetically useful carbohydrate derived ene-ynes by Sonogashira coupling of halo-exo-glycals and terminal alkynes. Furanose derivatives undergo the coupling reaction under standard Sonogashira-Hagihara conditions whereas pyranose derivatives required the use of Pd(0) as catalyst. Finally, two convergent approaches for the preparation of the ene-diyne moiety, present in several natural products, have been disclosed. The first approach involved Sonogashira coupling of halo-exo-glycals^{23,24} with a terminal alkyne followed by sp-sp Sonogashira coupling of the ensuing envne with a iodo-alkyne. The second, and more direct, strategy implied direct Sonogashira coupling of a iodoexo-glycal with a terminal divne. The use of these protocols for the preparation of naturally occurring natural products is underway in our laboratory and will be described in due course.

Acknowledgements

This research was supported with funds from the Dirección General de Enseñanza Superior (Grants: PPQ2000-1330, BQU2001-0582, and PPQ2003-00396). A.P. thanks Janssen-Cilag for financial support. A.B. thanks Janssen-Cilag and Consejo Superior de Investigaciones Científicas for a fellowship.

References and notes

- (a) Nicolaou, K. C.; Smith, A. L. Acc. Chem. Res. 1992, 25, 497; (b) Maier, M. E. Synlett, 1995, 13; (c) Grissom, J. W.; Gunawardena, G. U.; Klingberg, D.; Huang, D. Tetrahedron 1996, 52, 6453.
- (a) Kusumi, T.; Ohtani, I.; Nishiyama, K.; Kakisawa, H. *Tetrahedron Lett.* **1987**, *28*, 3981; (b) Kuhnt, D.; Anke, T.; Besl, H.; Bross, M.; Herrmann, R.; Mocek, U.; Steffan, B.; Steglich, W. J. Antibiot. **1990**, *43*, 1413; (c) Trowitsch-Kienast, W.; Forche, E.; Wray, V.; Riechenbach, H.; Hunsmann, G.; Höfle, G. Liebigs Ann. Chem., **1992**, 659; (d) Ohta, T.; Uwai, K.; Kikuchi, R.; Nozoe, S.; Oshima, Y.; Sasaki, K.; Yoshizaki, F. Tetrahedron **1999**, *55*, 12087.
- (a) Boldi, A. M.; Anthony, J.; Gramlich, V.; Knobler, C. B.; Boudon, C.; Gisselbrecht, J.-P.; Gross, M.; Diederich, F. *Helv. Chim. Acta* **1995**, *78*, 779; (b) Hynd, G.; Jones, G. B., II; Plourde, G. W., II; Wright, J. M. *Tetrahedron Lett.* **1999**, *40*, 4481; (c) Shimada, S.; Masaki, A.; Hayamizu, K.; Matsuda, H.; Okada, S.; Nakanishi, H. *Chem. Lett.* **2000**, *11*, 1128; (d) Ciulei, S. C.; Tykwinski, R. R. *Org. Lett.* **2000**, *2*, 3607.
- Isolation: (a) Bohlmann, F.; Ates (Gören), N.; Jakupovic, J.; King, R. M.; Robinson, H. Phytochemistry 1982, 21, 2691; Biological studies: (b) Nakamura, Y.; Ohto, Y.; Murakami, A.; Jiwajinda, S.; Ohigashi, H. J. Agric. Food Chem. 1998, 46, 5031; (c) Nakamura, Y.; Murakami, A.; Ohigashi, H. Asian Pacific J. Cancer Prev. 2000, 1, 115.
- 5. Ahmed, A. A.; Abou Elela, M. A. *Phytochemistry* **1999**, *51*, 551.
- Tan, R. X.; Jakupovic, J.; Bohlmann, F.; Jia, Z. J.; Huneck, S. *Phytochemistry* 1991, *30*, 583.
- Díaz, J. G.; Barba, B.; Herz, W. Phytochemistry 1994, 36, 703.
- (a) Tam, T. F.; Spencer, R. W.; Thomas, E. M.; Copp, L. J.; Krantz, A. J. Am. Chem. Soc. 1984, 106, 6849; (b) Spencer, R. W.; Tam, T. F.; Thomas, E.; Robinson, V. J.; Krantz, A. J. Am. Chem. Soc. 1986, 108, 5589.
- Gómez, A. M.; Pedregosa, A.; Valverde, S.; López, J. C. Chem. Commun. 2002, 2022.
- Gómez, A. M.; Danelón, G. O.; Pedregosa, A.; Valverde, S.; López, J. C. *Chem. Commun.* 2002, 2024.
- 11. Sonogashira, K. J. Organomet. Chem. 2002, 653, 46, and references cited therein.
- Gómez, A. M.; Pedregosa, A.; Valverde, S.; López, J. C. *Tetrahedron Lett.* 2003, 44, 6111.
- 13. For a recent review see: Taillefumier, C.; Chapleur, Y. Chem. Rev. 2004, 104, 263.
- Selected recent synthesis of substituted *exo-glycals*: (a) Griffin, F. K.; Paterson, D. E.; Murphy, P. V.; Taylor, R. J. K. *Eur. J. Org. Chem.*, **2002**, 1305; (b) Yang, W.-B.; Yang, Y.-Y.; Gu, Y. F.; Wang, S.-H.; Chang, C.-C.; Lin, C.-H. *J. Org. Chem.* **2002**, *67*, 3773; (c) Praly, J.-P.; Chen, G.-R.; Gola, J.; Hetzer, G. *Eur. J. Org. Chem.*, **2000**, 2831; (d) Xie, J.; Molina, A.; Czernecki, S. *J. Carbohydr. Chem.* **1999**, *18*, 481; (e) Lieberknecht, A.; Griesser, H.; Bravo, R. D.; Colinas, P. A.; Grigera, R. J. *Tetrahedron* **1998**, *54*, 3159; (f) Belica, P. S.; Franck, R. W. *Tetrahedron Lett.*

1998, 39, 8225; (g) Lakhrissi, M.; Chapleur, Y. Angew. Chem., Int. Ed. **1996**, 35, 750.

- 15. Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 4467.
- 16. Negishi, E.-I.; Anastasia, L. Chem. Rev. 2003, 103, 1979.
- 17. Alami, M.; Ferri, F.; Lisntrumelle, G. *Tetrahedron Lett.* **1993**, *34*, 6404.
- 18. For a recent overview on the Sonogashira reaction see: Tykwinski, R. R. Angew. Chem., Int. Ed. 2003, 42, 1566.
- Sonogashira, K. In *Metal-Catalyzed Cross-Coupling Reactions*; Diederich, F., Stang, P. J., Eds.; VCH: Weinheim, 1998, Chapter 5, pp 206.
- (a) Nielsen, M. B.; Utesch, N. F.; Moonen, N. N. P.; Boudon, C.; Gisselbrecht, J.-P.; Concilio, S.; Piotto, S. P.; Seiler, P.; Günter, P.; Gross, M.; Diederich, F. *Chem. Eur. J.* **2002**, *8*, 3601; (b) Wityak, J.; Chan, J. B. *Synth. Commun.* **1991**, *21*, 977.
- Russo, M. V.; Sterzo, C. L.; Franceschini, P.; Biagini, G.; Furlani, A. J. Organomet. Chem. 2001, 619, 49.
- Diyne 26 was prepared, according to the synthetic Scheme shown below according to: Dabdoub, M. J.; Baroni, A. C. M.; Lenardão, E. J.; Gianeti, T. R.; Hurtado, G. R. *Tetrahedron* 2001, *57*, 4271, Cadiot–Chodkiewicz coupling reaction of bromo alkyne B and phenyl acetylene 16 yielded diyne C, which upon deprotection furnished terminal alkyne 26.

- 23. General procedure for the Sonogashira coupling reaction. Method (a): To a thoroughly degassed (argon, 10min) solution of halo-exo-glycal (0.17 mmol) in Et₂NH, were added CuI (5%) and Pd(PPh₃)₂Cl₂ (10%). The reaction mixture was kept at room temperature with stirring for 5min. The appropriate terminal alkyne (1 equiv) dissolved in Et₂NH (3 mL) was then added via cannula. The reaction was then stirred at room temperature until complete disappearance of the starting material. The solution was treated with H₂O and extracted with ethyl acetate (EtOAc). The organic layer was then dried (magnesium sulfate) and evaporated to furnish a residue, which was purified by flash chromatography using hexane-EtOAc mixtures as eluant. Method (b): To a thoroughly degassed (argon, 10min) solution of iodo-exo-glycal (0.1 mmol) in Et₂NH (4 mL/ mmol) were added successively Pd(PPh₃)₄ (5µmol), CuI (0.01 mmol) and the corresponding alkyne (1.1 equiv, 0.11 mmol). The reaction was then stirred at room temperature until complete disappearance of the starting material (1-2h). The solution was diluted with ethyl acetate and washed successively with saturated NH₄Cl and brine. The organic layer was dried (magnesium sulfate) and evaporated to furnish a residue, which was purified by flash chromatography using hexane-EtOAc mixtures as eluant.
- 24. Data for selected compounds: Enyne **17**: $[\alpha]_D^{21} + 21.0$ (c 0.15, CHCl₃), ¹H NMR (200 MHz, CDCl₃) δ (ppm): 5.48 (d, J = 1.1 Hz, 1H), 5.33 (dd, J = 1.1, 3.6 Hz, 1H), 4.98 (s, 1H), 4.57 (dd, J = 3.6, 7.6 Hz, 1H), 4.36 (ddd, J = 5.3, 5.8, 7.6 Hz, 1H), 4.15 (m, 2H), 2.12 (s, 3H), 2.09 (s, 3H), 1.46 (s, 3H), 1.37 (s, 3H), 0.20 (s, 9H). ¹³C NMR (50 MHz, CDCl₃) δ (ppm): 169.3, 169.1, 162.5, 109.7, 98.9, 85.2, 83.2, 82.2, 75.1, 74.1, 72.3, 66.7, 26.8, 25.5, 20.9 (×2), 0.0. API-ES: 397 [M⁺+1], 419.0 [M⁺+Na].

Enyne **18**: $[\alpha]_D^{21} + 23.4$ (*c* 0.83, CHCl₃), ¹H NMR (300 MHz, CDCl₃) δ (ppm): 5.45 (s, 1H), 5.29 (d, $J=3.6\,\text{Hz}, 1\text{H}$), 4.90 (s, 1H), 4.46 (dd, $J=3.9, 7.9\,\text{Hz}$, 1H), 4.32 (ddd, J=5.4, 6.3, 7.9 Hz, 1H), 4.12 (m, 2H), 2.09 (s, 3H), 2.06 (s, 3H), 1.42 (s, 3H), 1.33 (s, 3H), 1.11 (m, 16H), 0.87 (t, 3H). ¹³C NMR (75MHz, CDCl₃) δ (ppm): 169.5, 169.3, 160.6, 109.8, 96.3, 86.0, 83.0, 75.1, 74.4, 74.3, 72.4, 67.2, 32.1, 29.8 (×2), 29.5, 29.4, 29.1, 28.9, 27.0, 25.5, 22.9, 21.1, 21.0, 20.0, 14.3. API-ES: 451.6 [M⁺+1]. *Enyne* **19** : $[\alpha]_D^{21}$ + 31.5 (*c* 0.9, CHCl₃), ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.32 (m, 5H), 5.54 (s, 1H), 5.37 (d, J=4.0 Hz, 1H), 5.17 (s, 1H), 4.58 (dd, J=4.0, 7.9 Hz, 1H), 4.37 (ddd, J=5.3, 5.6, 7.8 Hz, 1H), 4.18 (m, 2H), 2.12 (s, 3H), 1.47 (s, 3H), 1.37 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 169.3, 169.2, 161.3, 131.4, 128.3, 128.1, 123.7, 109.8, 94.7, 85.4, 83.6, 83.3, 75.2, 74.2, 72.4, 67.0, 26.9, 25.4, 20.9, 20.8. API-ES: 401.2 [M⁺+1], 423.3 $[M^++Na].$ *Enyne* **20**: $[\alpha]_{D}^{21}$ + 31.4 (*c* 1.0, CHCl₃), ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.41–7.25 (m, 20H), 5.24 (d, J=1.8 Hz, 1H), 4.87 (d, J=11.4Hz, 1H), 4.71–4.42 (m, 7H), 4.35 (dd, J=9.0, 1.8 Hz, 1H), 4.03 (t, J=2.1 Hz, 1H), 3.92 (dt, J=6.3, 2.1 Hz, 1 H), 3.70 (d, J=6.3 Hz, 2 H), 3.62 (dd, J=9.0, 2.1 Hz, 1H), 0.16 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 162.1, 138.4, 138.1, 137.9, 137.7, 128.4, 128.3, 128.2, 127.9 (×2), 127.7, 127.6, 127.5 (×2), 99.9, 98.7, 90.2, 81.6, 78.7, 76.5, 74.3, 74.1, 74.0, 73.5, 72.7,68.3, 0.0 (×3); API-ES: m/e: 633.3 [M+1]⁺. Enyne **21**: $[\alpha]_{D}^{21}$ + 33.9 (*c* 1.0, CHCl₃), ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.44–7.23 (m, 25H), 5.42 (d, J=1.5 Hz, 1H), 4.89 (d, J=11.7 Hz, 1H), 4.71-4.55 (m, 6H), 4.45 (d, J=11.7 Hz, 1H), 4.41 (dd, J=9.0, 1.0 Hz, 1H), 4.07 (t, J=2.0 Hz, 1H), 3.99 (dt, J=6.0, 2.0 Hz, 1H), 3.82-3.70 (m, 2H), 3.68 (dd, J=9.0, 2.0Hz, 1H); ¹³C NMR (75MHz, CDCl₃) δ (ppm): 160.7, 138.3, 138.1, 138.0, 137.8, 131.4, 128.4, 128.3 (×2), 128.1 (×2), 127.9, 127.8, 127.7, 127.6 (×2), 127.5, 123.9, 93.6, 90.7, 84.4, 81.6, 78.9, 76.7, 74.3, 74.1,74.0, 73.5, 72.8, 68.8; API-ES: m/e: 659.3 $[M+Na]^+$ *Enyne* **22**: $[\alpha]_{D}^{21}$ + 33.6 (*c* 1.2, CHCl₃), ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.42–7.19 (m, 20H), 5.00 (s, 1H), 4.80– 4.51 (m, 8H), 4.18 (ddd, J=9.7, 3.1, 2.4Hz, 1H), 3.91 (d, J=4.1 Hz, 1H), 3.89–3.79 (m, 4H), 0.18 (s, 9H); ¹³C NMR (75MHz, CDCl₃) δ (ppm): 159.8, 138.3, 138.0, 137.8, 137.4, 128.4, 128.3, 128.2, 127.9, 127.8, 127.7, 127.6, 127.5, 99.7, 98.7, 89.8, 83.6, 77.6 (×2), 77.5, 73.8 (×2), 73.0, 71.4, 68.4, 0.4 (×3); API-ES: m/e: 633.3 [M+1]⁺, 655.3 $[M+Na]^+$. Ene-diyne **25**: $[\alpha]_D^{21} + 3.0$ (c 1.0, CHCl₃), ¹H NMR $(a_1, b_2) = (a_2, b_3) = (a_3, b_4) = (a_4, b_3) = (a_3, b_4) = (a_4, b_3) = (a_4, b_3) = (a_4, b_4) = ($ $(300 \text{ MHz}, \text{ CDCl}_3) \delta$ (ppm): 7.71–7.26 (m, 25H), 5.04 (d, J=0.7 Hz, 1H), 4.80–4.53 (m, 8H), 4.24–4.18 (m, 1H), 3.95–3.80 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 162.7, 138.3, 137.9, 137.7, 137.2, 132.3, 128.8, 128.5, 128.4, 128.3 (×2), 128.0, 127.9, 127.8 (×2), 127.7 (×2), 127.6, 127.4, 122.2, 88.5, 83.4, 81.5, 77.8, 77.7, 77.4 (×2), 77.1, 74.6, 73.8, 73.5, 73.1, 71.6, 68.1; API-ES: m/e: 683.3 $[M+Na]^+$. *Ene-diyne* **27**: $[\alpha]_D^{21} + 11.5$ (*c* 0.6, CHCl₃), ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.42 (m, 5H), 7.32 (m, 5H), 5.50 (s, 1H, J=0.98 Hz), 5.34 (dd, 1H, J=0.98 Hz, J=3.7 Hz, H-3), 5.05 (s, 1H), 4.53 (dd, 1H, J=3.7, 8.5 Hz), 4.34 (ddd, 1H, J=4.6, 5.4, 8.3 Hz, H-5), 4.19 (dd, 1H, J=5.6, 8.9 Hz), 4.13 (dd, 1H, J=4.6, 8.8 Hz), 2.13 (s, 3H, Me),2.11 (s, 3H), 1.45 (s, 3H), 1.35 (s 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 169.5, 169.3, 164.9, 132.6, 129.3, 128.6, 122.2, 110.0, 84.3, 83.9, 82.4, 78.9, 76.3, 75.3, 74.4, 74.1, 72.3, 67.3, 27.1, 25.5, 21.1, 20.1. API-ES: 425.2 [M⁺+1].